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Despite the fact that complex visual scenes contain multiple, overlap- 
ping objects, people perform object recognition with ease and accuracy. 
One operation that facilitates recognition is an early segmentation pro- 
cess in which features of objects are grouped and labeled according 
to which object they belong. Current computational systems that per- 
form this operation are based on predefined grouping heuristics. We 
describe a system called MAGIC that learns how to group features 
based on a set of presegmented examples. In many cases, MAGIC dis- 
covers grouping heuristics similar to those previously proposed, but it 
also has the capability of finding nonintuitive structural regularities in 
images. Grouping is performed by a relaxation network that attempts 
to dynamically bind related features. Features transmit a complex- 
valued signal (amplitude and phase) to one another; binding can thus 
be represented by phase locking related features. MAGIC’S training 
procedure is a generalization of recurrent backpropagation to complex- 
valued units. 

1 Introduction 

Recognizing an isolated object in an image is a demanding Computational 
task. The difficulty is greatly compounded when the image contains 

Neural Computation 4, 650-665 (1992) @ 1992 Massachusetts Institute of Technology 



Learning to Segment Images 651 

multiple objects because image features are not grouped according to 
which object they belong. Without the capability to form such group- 
ings, it would be necessary to undergo a massive search through all sub- 
sets of image features. For this reason, most machine vision recognition 
systems include a component that performs feature grouping or image 
segmentation (e.g., Guzman 1968; Lowe 1985; Marr 1982). Psychophysical 
and neuropsychological evidence suggests that the human visual system 
performs a similar operation (Duncan 1984; Farah 1990; Kahneman and 
Henik 1981; Treisman 1982). 

Image segmentation presents a circular problem: Objects cannot be 
identified until the image has been segmented, but unambiguous seg- 
mentation of the image requires knowledge of what objects are present. 
Fortunately, object recognition systems do not require precise segmenta- 
tion: Simple heuristics can be used to group features, and although these 
heuristics are not infallible, they suffice for most recognition tasks. Fur- 
ther, the segmentation-recognition cycle can iterate, allowing the recog- 
nition system to propose refinements of the initial segmentation, which 
in turn refines the output of the recognition system (Hinton 1981; Hanson 
and Riseman 1978; Waltz 1975). 

A multitude of heuristics have been proposed for segmenting im- 
ages. Gestalt psychologists have explored how people group elements of 
a display and have suggested a range of grouping principles that gov- 
ern human perception. For example, there is evidence for the grouping 
of elements that are close together in space or time, that appear similar, 
that move together, or that form a closed figure (Rock and Palmer, 1990). 
Computer vision researchers have studied the problem from a more com- 
putational perspective. They have investigated methods of grouping el- 
ements of an image based on nonaccidental regdarities-feature combina- 
tions that are unlikely to occur by chance when several objects are juxta- 
posed, and are thus indicative of a single object. Kanade (1981) describes 
two such regularities, parallelism and skewed symmetry, and shows how 
finding instances of these regularities can constrain the possible interpre- 
tations of line drawings. Lowe and Binford (1982) find nonaccidental, 
significant groupings through a statistical analysis of images. They eval- 
uate potential feature groupings with respect to a set of heuristics such as 
collinearity, proximity, and parallelism. The evaluation is based on a sta- 
tistical measure of the likelihood that the grouping might have resulted 
from the random alignment of image features. Boldt et al. (1989) describe 
an algorithm for constructing lines from short line segments. The algo- 
rithm evaluates the goodness of fit of pairs of line segments in a small 
neighborhood based on relational measures (collinearity, proximity, and 
contrast similarity). Well matched pairs are replaced by longer segments, 
and the procedure is repeated. 

In these earlier approaches, the researchers have hypothesized a set of 
grouping heuristics and then tested their psychological validity or com- 
putational utility. In our work, we have taken an adaptive approach to the 



652 M. C. Mozer et al. 

Figure 1 : Examples of randomly generated two-dimensional geometric con- 
tours. 

problem of image segmentation in which a system learns how to group 
features based on a set of examples. We call the system MAGIC, an 
acronym for multiple-object adaptive grouping of image components. In 
many cases MAGIC discovers grouphg heuristics similar to those pro- 
posed in earlier work, but it also has the capability of finding nonintuitive 
structural regularities in images. 

MAGIC is trained on a set of presegmented images containing mul- 
tiple objects. By "presegmented" we mean that each image feature is 
labeled as to which object it belongs. MAGIC learns to detect configu- 
rations of the image features that have a consistent labeling in relation 
to one another across the training examples. Identifying these config- 
urations then allows MAGIC to label features in novel, unsegmented 
images in a manner consistent with the training examples. 

2 The Domain 

Our initial work has been conducted in the domain of two-dimensional 
geometric contours, including rectangles, diamonds, crosses, triangles, 
hexagons, and octagons. The contours are constructed from four primi- 
tive feature types-oriented line segments at 0", 45", 90", and 135"-and 
are laid out on a 25 x 25 grid. At each location on the grid are units, 
called feature units, that represent each of the four primitive feature types. 
In our present experiments, images contain two contours. We exclude 
images in which the two contours share a comrnon edge. This permits a 
unique labeling of each feature. Examples of several randomly generated 
images containing rectangles and diamonds are shown in Figure 1. 

3 Representing Feature Labelings 

Before describing MAGIC, we must first discuss a representation that 
allows for the labeling of features. von der Malsburg (1981; von der 
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Malsburg and Schneider 1986), Gray et al. (1989), Eckhorn et al. (1988), 
and Strong and Whitehead (1989), among others, have suggested a bio- 
logically plausible mechanism of labeling through temporal correlations 
among neural signals, either the relative timing of neuronal spikes or 
the synchronization of oscillatory activities in the nervous system. The 
key idea here is that each processing unit conveys not just an activation 
value-average firing frequency in neural terms-but also a second, in- 
dependent value that represents the relative phase of firing. The dynamic 
grouping or binding of a set of features is accomplished by aligning the 
phases of the features. 

A flurry of recent work on populations of coupled oscillators (e.g., 
Baldi and Meir 1990; Grossberg and Somers 1991; Eckhorn et al. 1990; 
Kammen et al. 1990) has shown that this type of binding can be achieved 
using simple dynamic rules. However, most of this work assumes a 
relatively homogeneous pattern of connectivity among the oscillators and 
has not attempted to tackle problems in computer vision such as image 
segmentation, where each oscillator represents an image feature, and 
more selective connections between the oscillators are needed to simulate 
the selective binding of appropriate subsets of image features. A few 
exceptions exist (Goebel 1991a,b; Hummel and Biederman 1992; Lumer 
and Huberman 1991; Sporns et al. 1991); in these systems, the pattern 
of connectivity among oscillators is specified by simple predetermined 
grouping heuristics.' 

In MAGIC, the activity of a feature unit is a complex value with 
amplitude and phase components. The phase represents a labeling of the 
feature, and the amplitude represents the confidence in that labeling. 
The amplitude ranges from 0 to 1, with 0 indicating a complete lack 
of confidence and 1 indicating absolute certainty. There is no explicit 
representation of whether a feature is present or absent in an image. 
Rather, absent features are clamped off-their amplitudes are forced to 
remain at 0-which eliminates their ability to influence other units, as 
will become clear when the activation dynamics are presented later. 

4 The Architecture 

When an image is presented to MAGIC, units representing features ab- 
sent in the image are clamped off and units representing present features 
are assigned random initial phases and small amplitudes. MAGIC'S task 
is to assign appropriate phase values to the units. Thus, the network per- 
forms a type of pattern completion. 

'In the Sporns et a/ .  model, the coupling strength between two connected units 
changes dynamically on a fast time scale, but this adaptation is related to achieving 
temporal correlations, not learning grouping principles. 
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Figure 2: The architecture of MAGIC. The lower (input) layer contains the 
feature units; the upper layer contains the hidden units. Each layer is arranged 
in a spatiotopic array with a number of different feature types at each position 
in the array. Each plane in the feature layer corresponds to a different feature 
type. The grayed hidden units are reciprocally connected to all features in 
the corresponding grayed region of the feature layer. The lines between layers 
represent projections in both directions. 

The network architecture consists of two layers of units, as shown in 
Figure 2. The lower (input) layer contains the feature units, arranged 
in spatiotopic arrays with one array per feature type. The upper layer 
contains hidden units that help to align the phases of the feature units; 
their response properties are determined by training. There are interlayer 
connections, but no intralayer connections. Each hidden unit is recipro- 
cally connected to the units in a local spatial region of all feature arrays. 
We refer to this region as a patch; in our current simulations, the patch 
has dimensions 4 x 4. For each patch there is a corresponding fixed-size 
pool of hidden units. To achieve uniformity of response across the im- 
age, the pools are arranged in a spatiotopic array in which neighboring 
pools respond to neighboring patches and the patch-to-pool weights are 
constrained to be the same at all locations in the array. 

The feature units activate the hidden units, which in turn feed back to 
the feature units. Through a relaxation process, the system settles on an 
assignment of phases to the features. One might consider an alternative 
architecture in which feature units were directly connected to one another 
(Hummel and Biederman 1992). However, this architecture is in principle 
not as powerful as the one we propose because it does not allow for 
higher order contingencies among features. 
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5 Network Dynamics 

The dynamics of MAGIC are based on a mean-field approximation to a 
stochastic network of directional units, described in Zemel et al. (1992). 
A variant of this model was independently developed by Gislh et al. 
(1991). These papers provide a justification of the activation rule and 
error function in terms of an energy minimization formalism. 

The response of each feature unit i, x,, is a complex value in polar 
form, ( a J ,  p , ) ,  where a, is the amplitude and p J  is the phase. Similarly, the 
response of each hidden unit j ,  y,, has components (b, ,  4,). The weight 
connecting unit i to unit j ,  wIJ, is also complex valued, having components 
(p,,,O,,). The activation rule we propose is a generalization of the dot 
product to the complex domain. The net input to hidden unit j at time 
step t + 1 is 

net,(t + 1) = x ( t )  . w, 
= E M ) q  
= ({ (CJal(t)p]l cos[pl(t) - 

' 12  
+ (CJal(t)p,l sin[pl(t) - 3 

where the asterisk denotes the complex conjugate. The net input is passed 
through a squashing nonlinearity that maps the amplitude of the re- 
sponse from the range 0 + co to 0 -1 but leaves the phase unaffected: 

net,(t) 11 [ ~ ( t ) ]  

y,(t) = X T W  
where m,(t) is the magnitude of the net input, Inet,(t)l, and Ik is the 
modified Bessel function of the first kind and order k. The squashing 
function Il(rn)/Io(m) is shown in Figure 3. 

The intuition underlying the activation rule is as follows. The ampli- 
tude (confidence) of a hidden unit, b,, should be monotonically related 
to how well the feature response pattern matches the hidden unit weight 
vector, just as in the standard real-valued activation rule. Indeed, one 
can readily see that if the feature and weight phases are equal ( p ,  = O,,), 
the rule for bl reduces to the real-valued case. Even if the feature and 
weight phases differ by a constant ( p ,  = O,, + c), bJ is unaffected. This is 
a critical property of the activation rule: Because absolute phase values 
have no intrinsic meaning, the response of a unit should depend only on 
the relative phases. That is, its response should be rotation invariant. The 
activation rule achieves this by essentially ignoring the average difference 
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Figure 3: The squashing function G = I ~ ( m ) / I ~ ( m ) .  The amplitude of the net 
input to a unit is passed through this function to obtain the output amplitude. 

in phase between the feature units and the weights. The hidden phase, 
91, reflects this average difference? 

The flow of activation from the hidden layer to the feature layer fol- 
lows the same dynamics as the flow from the feature layer to the hidden 
layer: 

net,(t + 1) = y(t + 1) . w, 

and 
net,(t) 11 [ml(t)l x z ( t )  = ~~ 

mdt )  I0 b I ( f ) J  

if feature i is present in the image, or xl(t) = 0 otherwise. Note that 
update is sequential by layer: the feature units activate the hidden units, 
which then activate the feature units. 

In MAGIC, the weight matrix is constrained to be Hermitian, i.e., 
w,I = "5. This is a generalization of weight symmetry to the complex 
domain. Weight symmetry ensures that MAGIC will converge to a fixed 
point. The proof of this is a generalization of Hopfield's (1984) result to 
complex units, discrete-time update, and a two-layer architecture with 
sequential layer updates and no intralayer connections. 

2To elaborate, the activation rule produces a 9, that yields the minimum of the 
following expression: 

d, = [a1 cosp, ~ P,~ cos(Q,, + q,)]* + [aI sinp, - P,, sin(@,, + 9,)12 
I 

This is a measure of the distance between the feature and weight vectors given a free 
parameter 9, that specifies a global phase shift of the weight vector. 
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6 Learning Algorithm 

During training, we would like the hidden units to learn to detect con- 
figurations of features that reliably indicate phase relationships among 
the features. For instance, if the contours in the image contain extended 
horizontal lines, one hidden unit might learn to respond to a collinear ar- 
rangement of horizontal segments. Because the unit's response depends 
on the phase pattern as well as the activity pattern, it will be strongest if 
the segments all have the same phase value. 

We have experimented with a variety of algorithms for training 
MAGIC, including an extension of soft competitive learning (Nowlan 
1990) to complex-valued units, recurrent backpropagation (Almeida 1987; 
Pineda 19871, backpropagation through time (Rumelhart et al. 19861, a 
backpropagation autoencoder paradigm in which patches of the image 
are processed independently, and an autoencoder in which the patches 
are processed simultaneously and their results are combined. The algo- 
rithm with which we have had greatest success, however, is a relatively 
simple single-step error propagation algorithm. It involves running the 
network for a fixed number of iterations and, for each iteration, using 
backpropagation to adjust the weights so that the feature phase pattern 
better matches a target phase pattern. Each training trial proceeds as 
follows: 

1. A training example is generated at random. This involves selecting 
two contours and instantiating them in an image. The features 
of one contour have target phase 0" and the features of the other 
contour have target phase 180". 

2. The training example is presented to MAGIC by setting the initial 
amplitude of a feature unit to 0.1 if its corresponding image feature 
is present, or clamping it at 0.0 otherwise. The phases of the feature 
units are set to random values in the range 0" to 360". 

3. Activity is allowed to flow from the feature units to the hidden 
units and back to the feature units. 

4. The new phase pattern over the feature units is compared to the 
target phase pattern (see step l), and an error measure is computed: 

where in, is the magnitude of the net input to feature unit i, pi is 
the actual phase of unit i, and p i  is the target phase. This is a log 
likelihood error function derived from the formalism described in 
Zemel et al. (1992). In this formalism, the activities of units represent 
a probability distribution over phase values. The error function is 
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the asymmetric divergence between the actual and target phase dis- 
tributions. The aim is to minimize the difference between the target 
and actual phases and to maximize the amplitude, or confidence, of 
the response. The error measure factors out the absolute difference 
between the target and actual phases. That is, E is minimized when 
j j ,  - p l  is equal for all i, regardless of the value of fj, - p l .  

5. Using a generalization of backpropagation to complex valued units, 
error gradients are computed for the feature-to-hidden and hidden- 
to-feature weights. 

6. Steps 3-5 are repeated for a maximum of 30 iterations. The trial is 
terminated if the error increases on five consecutive iterations. 

7. Weights are updated by an amount proportional to the average er- 
ror gradient over iterations. The constraint that wil = zuI; is enforced 
by modifying w , ~  in proportion to V,, + Vf and modifying w,, in pro- 
portion to V; + V,, where V, denotes the gradient with respect to 
the weight to i from j. To achieve a translation-invariant response 
of the hidden units, hidden units of the same "type" responding 
to different regions of the image are constrained to have the same 
weights. This is achieved by having single set of underlying weight 
parameters that is replicated across the hidden layer. The appro- 
priate gradient descent algorithm for these parameters is to adjust 
them in proportion to the sum of the gradients with respect to each 
of their instantiations. 

The algorithm is far less successful when a target phase pattern is 
given just on the final iteration or final k iterations, rather than on each 
iteration. Surprisingly, the algorithm operates little better when error 
signals are propagated back through time. 

The simulations reported below use a learning rate parameter of 0.005 
for the amplitudes and 0.02 for the phases. On the order of 10,000 learn- 
ing trials are required for stable performance, although MAGIC rapidly 
picks up on the most salient aspects of the domain. 

7 Simulation Results 

We trained a network with 20 hidden units per pool on examples like 
those shown in Figure 1. The resulting weights are shown in Figure 4. 
Each hidden unit attempts to detect and reinstantiate activity patterns 
that match its weights. One clear and prevalent pattern in the weights is 
the collinear arrangement of segments of a given orientation, all having 
the same phase value. When a hidden unit having weights of this form 
responds to a patch of the feature array, it tries to align the phases of the 
patch with the phases of its weight vector. By synchronizing the phases 
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Figure 4: Complex feature-to-hidden connection weights learned by MAGIC. 
In this simulation, there are connections from a 4 x 4 patch of the image to a pool 
of 20 hidden units. (These connections are replicated for each patch in the image 
to achieve a uniformity of hidden unit response.) The connections feeding into 
each hidden unit are presented on a light gray background. Each hidden unit 
has a total of 64 incoming weights4  x 4 locations in its receptive field and 
four feature types at each location. The weights are further grouped by feature 
type (dark gray background), and for each feature type they are arranged in 
a 4 x 4 pattern homologous to the image patch itself. The area of a circle 
is proportional to the amplitude of the corresponding weight, the orientation 
of the internal tick mark represents the phase angle. Due to the symmetry 
constraint, hidden-to-feature weights (not shown) mirror the feature-to-hidden 
weights. 
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Figure 5: An example of MAGIC segmenting an image. The "iteration" refers 
to the number of times activity has flowed from the feature units to the hidden 
units and back. The phase value of a feature is represented by a gray level. 
The cyclic phase continuum can be approximated only by a linear gray level 
continuum, but the basic information is conveyed nonetheless. 

of features, it acts to group the features. Thus, one can interpret the 
weight vectors as the rules by which features are grouped. 

Whereas traditional grouping principles indicate the conditions under 
which features should be bound together as part of the same object, 
the grouping principles learned by MAGIC also indicate when features 
should be segregated into different objects. For example, the weights of 
the vertical and horizontal segments are generally 180" out of phase with 
the diagonal segments. This allows MAGIC to segregate the vertical 
and horizontal features of a rectangle from the diagonal features of a 
diamond (see Fig. 1, left panel). We had anticipated that the weights to 
each hidden unit would contain two phase values at most because each 
image patch contains at most two objects. However, some units make use 
of three or more phases, suggesting that the hidden unit is performing 
several distinct functions. As is the usual case with hidden unit weights, 
these patterns are difficult to interpret. 

Figure 5 presents an example of the network segmenting an image. 
The image contains two rectangles. The top left panel shows the features 
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of the rectangles and their initial random phases. The succeeding panels 
show the network's response during the relaxation process. The lower 
right panel shows the network response at equilibrium. Features of each 
object have been assigned a uniform phase, and the two objects are 180" 
out of phase. The task here may appear simple, but it is quite challenging 
due to the illusory rectangle generated by the overlapping rectangles. 

8 Alternative Representation of Feature Labeling 

To perform the image segmentation task, each feature unit needs to main- 
tain two independent pieces of information: a label assigned to the fea- 
ture and a measure of confidence associated with the label. In MAGIC, 
these two quantities are encoded by the phase and amplitude of a unit, 
respectively. This polar representation is just one of many possible en- 
codings, and requires some justification due to the complexity of the 
resulting network dynamics. An alternative we have considered-which 
seems promising at first glance but has serious drawbacks-is the rect- 
angular coordinate analog of the polar representation. In this scheme, a 
feature unit conveys values indicating belief in the hypotheses that the 
feature is part of object A or object B, where A and B are arbitrary names. 
For example, the activities ( 1 , O )  and (0 , l )  indicate complete confidence 
that the feature belongs to object A or B, respectively, (0,O) indicates that 
nothing is known about which object the feature belongs to, and inter- 
mediate values indicate intermediate degrees of confidence in the two 
hypotheses. The rectangular and polar representations are equivalent in 
the sense that one can be transformed into the other.3 

The rectangular scheme has two primary benefits. First, the activation 
dynamics are simpler. Second, it allows for the simultaneous and explicit 
consideration of multiple labeling hypotheses, whereas the polar scheme 
allows for the consideration of only one label at a time. However, these 
benefits are obtained at the expense of presuming a correspondence be- 
tween absolute phase values and objects. (In the rectangular scheme we 
described, A and B always have phases 0" and 90°, respectively, obtained 
by transforming the rectangular coordinates to polar coordinates.) The 
key drawback of absolute phase values is that a local patch of the image 
cannot possibly determine which label is correct. A patch containing, 
say, several collinear horizontal segments can determine only that the 
segments should be assigned the same label. Preliminary simulations 
indicate that the resulting ambiguity causes severe difficulties in process- 
ing. In contrast, the polar scheme allows the network to express the 
relative labelings of two segments-e.g., that they should be assigned the 
same label-without needing to specify the particular label. 

'Yann Le Cun (personal communication, 1991) has independently developed the 
notion of using the rectangular encoding scheme in the domain of adaptive image 
segmentation. 
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9 Current Directions 

We are currently extending MAGIC in several directions, which we out- 
line here. 

0 We have not addressed the question of how the continuous phase 
representation is transformed into a discrete object label. One may 
simply quantize the phase values such that all phases in a given 
range are assigned the same label. This quantization step has the 
extremely interesting property that it allows for a hierarchical de- 
composition of objects. If the quantization is coarse, only gross 
phase differences matter, allowing one object to be distinguished 
from another. As the quantization becomes finer, an object is di- 
vided into its components. Thus, the quantization level in effect 
specifies whether the image is parsed into objects, parts of objects, 
parts of parts of objects, etc. 

This hierarchical decomposition of objects can be achieved only 
if the phase values reflect the internal structure of an object. For 
example, in the domain of geometric contours, MAGIC would not 
only have to assign one contour a different phase value than an- 
other, but it would also have to assign each edge composing a con- 
tour a slightly different phase than each other edge (assuming that 
one considers the edges to be the "parts" of the contour). Some- 
what surprisingly, MAGIC does exactly this because the linkage 
between segments of an edge is stronger than the linkage between 
two edges. This is due to the fact that collinear features occur in 
images with much higher frequency than do corners. Thus, the rel- 
ative frequency of feature configurations leads to a natural principle 
for the hierarchical decomposition of objects. 

0 Although MAGIC is trained on pairs of objects, it has the potential 
of processing more than two objects at a time. For example, with 
three overlapping objects, MAGIC attempts to push each pair 180" 
out of phase but ends up with a best constraint satisfaction solution 
in which each object is 120" out of phase with each other. We are 
exploring the limits of how many objects MAGIC can process at a 
time. 

0 Spatially local grouping principles are unlikely to be sufficient for 
the image segmentation task. Indeed, we have encountered incor- 
rect solutions produced by MAGIC that are locally consistent but 
globally inconsistent. To solve this problem, we are investigating 
an architecture in which the image is processed at several spatial 
scales simultaneously. Fine-scale detectors respond to the sort of 
detail shown in Figure 4, while coarser-scale detectors respond to 
more global structure but with less spatial resolution. 
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Simulations are under way to examine MAGIC’S performance on 
real-world images-overlapping handwritten letters and digits- 
where it is somewhat less clear to which types of patterns the hid- 
den units should respond. 

0 Behrmann et al. (1992) are conducting psychological experiments to 
examine whether limitations of the model match human limitations. 
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